Nutrition Supplementation and Concussions

By October 30, 2018 December 28th, 2018 No Comments

Concussions, or mild traumatic brain injury (mTBI), are common among athletes, especially within high risk sports such as wrestling, American football, ice hockey, soccer, and basketball (Zuckerman et al. 2015).  There are preventable measures that organizations and athletes have implemented, such as use of more advanced equipment, tighter rules and regulations, and more comprehensive athlete education.  However, concussion rates continue to rise, which may be the result of increased public awareness, subsequently increasing the incidence of diagnosed concussions.  In fact, the incidence on concussions among high school athletes has increased by 4.2-fold over an 11-year consecutive period beginning in 1998 (Lincoln et al. 2011). 

Due to the increased awareness and the negative effects resulting from repeated brain injuries, possible treatment modalities have become an increased area of interest among researchers and health professionals.  Unfortunately, to date, there have not been any universally accepted treatments for concussions, besides complete rest, with recent data even questioning the need for strict physical rest post-concussion (Leddy et al. 2016).   What about the possibility of using nutrition and dietary supplements in treating brain injuries?  To date, the research is limited to preclinical and animal model studies, with little to no evidence showing consistent benefits in humans (Trojian et al. 2017).  There are, however, some human trials with severe traumatic brain injury showing potential positive results.   The most common dietary supplements studied for the prevention and treatment of brain injuries include: omega-3 fatty acids, creatine, curcumin, resveratrol, melatonin, and a few specific vitamins.   

Omega-3 Fatty Acids 
There have been several animal studies investigating the benefits of omega-3 fatty acids, particularly DHA or docosahexaenoic acid, in the treatment and prevention of concussions.  DHA, along with EPA or eicosapentaenoic acid, are long chain omega-3 polyunsaturated fatty acids, found primarily in marine sources, such as fish and algae.  DHA is recognized as being essential for brain development and function, because it is the primary structural omega-3 fatty acid present in the brain (Barrett et al. 2014).   Because of DHA’s important structural and functional roles in the brain, consumption has been shown to be beneficial for cognitive function, including protection from any structural damage resulting from a TBI (Mills et al. 2011).   It has been shown that supplementation with omega-3 fatty acids before a concussion can reduce markers of brain injury and cell death (Mills et al. 2011) and that supplementing after a concussion can decrease the amount of injury the brain sustains (Bailes et al. 2010).  Unfortunately, at this time there is no confirmed protocol for DHA supplementation, due to limited evidence from human studies.  However, one study with American football players showed that supplementation with 2 grams of DHA daily reduced levels of the serum biomarker neurofilament light (NF-L) (Oliver et al. 2016), a marker of brain damage (Oliver et al. 2018).  Although there is no formal protocol at this time, many organizations are recommending that all athletes participating in contact sports receive omega-3 fatty acids as part of concussion prevention and recovery process.

Creatine supplementation is most well known for the role in improving muscle mass growth and power; however, has recently come up in studies looking at the role in concussion treatment.  Creatine is naturally found in the human brain.  In the days following a concussion, reduced levels of creatine have been documented, coinciding with reduced levels of cerebral energy metabolism markers in the period following the concussion (Vagnozzi et al. 2013).  Two human-based studies using creatine supplementation in children after sustaining a TBI showed that compared with the control group, the children who were supplemented with creatine had significantly improved cognition, communication, self-care, personality, and behavior (Sakellaris et al. 2006) and significantly decreased headaches, dizziness, and fatigue (Sakellaris et al. 2008). Based on these studies, creatine shows promise in the treatment of concussions; however, there is not a consensus on the amount or specific protocol at this time.

Curcumin is the flavonoid compound found in turmeric; the popular Indian spice that has become well known for its anti-inflammatory properties.  Flavonoids, curcumin in particular, may exert an array of neuroprotective actions within the brain, including protection of neurons against injury induced by neurotoxins (Mendes et al. 2014); decrease neuroinflammation (Briones et al. 2013); and the potential to promote memory, learning, and cognitive function (Petraglia et al. 2011).  Other studies have indicated that curcumin supplementation post TBI may reduce brain cell death (Zhu et al. 2014); however, because the research is currently limited to preclinical animal studies there is no recommended dose or protocol.

Resveratrol, a polyphenol found in grapes, blueberries, red wine, and nuts, is a potent antioxidant.  There have been many studies evaluating the effects of resveratrol in treating concussions due to its ability to exert neuroprotective effects in degenerative neurological diseases (Saiko et al. 2008).  The two animal studies evaluating resveratrol in the treatment of concussions did find that supplementation with resveratrol after a concussion can increase brain cell survival (Lin et al. 2014), as well as improve motor performance, visual spatial memory, and behavior (Singleton et al. 2010).   There has been one human trial examining the use of resveratrol treatment in boxers who have sustained a concussion; however, this data has yet to be published.  Therefore, there is no current consensus on resveratrol protocol for treatment or prevention of concussions.

Melatonin is a hormone secreted by the pineal gland in the brain and is known to help regulate sleep cycles.  This is another supplement found to have potential brain protecting properties.  Animal studies have shown that melatonin can decrease brain edema and intracranial pressure as well as the permeability of the blood brain barrier (Bayir et al. 2008, Kabadi & Maher 2010).  Melatonin also has shown some value in animal models as a neuroprotective agent against Alzheimer’s disease, Huntington’s disease, and amyotrophic lateral sclerosis (Pandi-Perumal et al. 2013). However, these neuroprotective effects have not been studied in actual human models; therefore, there is no current specific recommendation for melatonin for the treatment or prevention of concussions.

Vitamins C, E, and D
These vitamins have been studied more than others for the treatment of concussions.   Vitamin E is a potent lipid peroxidation inhibitor that is present in high concentrations in human brains (Petraglia et al. 2011) and lipid peroxidation inhibitors have been reported to be effective neuroprotectants in TBI models (Hall et al. 2010).  Vitamin C, or ascorbic acid, transforms vitamin E to its active form.  Rats treated with vitamin E post-concussion had decreased functional neurologic deficits and microscopic brain damage (Conte et al. 2004) and reduced oxidative stress (Ashbaugh & McGrew 2016).  When vitamin C is supplemented with vitamin E, there is significantly less brain injury due to oxidative stress than supplementation with either vitamin E or vitamin C alone (Ishaq et al. 2013).  Likewise, by itself, vitamin D has not shown great promise in the treatment of TBI; however, with the combination with progesterone, there have been some promising results.  In a rodent study, the combination of progesterone and vitamin D showed significantly reduced neuronal loss and proliferation of reactive astrocytes after a TBI (Tang et al. 2013).  In two human studies, the combination of progesterone and vitamin D in patients with severe TBI resulted in significantly improved Glasgow Outcome Scale scores, a better recovery rate (Aminmansour et al. 2012), and a greater ability to reduce neuroinflammation (Singleton et al. 2010).  Like other supplements, vitamins C, D, and E have shown promise for the treatment of severe brain injury; however, more research is needed for their use in concussions specifically.

Aminmansour, B., Nikbakht, H., Ghorbani, A., Rezvani, M., Rahmani, P., Torkashvand, M., … & Moradi, M. (2012). Comparison of the administration of progesterone versus progesterone and vitamin D in improvement of outcomes in patients with traumatic brain injury: A randomized clinical trial with placebo group. Advanced biomedical research, 1.

Ashbaugh, A., & McGrew, C. (2016). The role of nutritional supplements in sports concussion treatment. Current sports medicine reports, 15(1), 16-19.

Bailes, J. E., & Mills, J. D. (2010). Docosahexaenoic acid reduces traumatic axonal injury in a rodent head injury model. Journal of neurotrauma, 27(9), 1617-1624.

Barrett, E. C., McBurney, M. I., & Ciappio, E. D. (2014). ω-3 fatty acid supplementation as a potential therapeutic aid for the recovery from mild traumatic brain injury/concussion. Advances in nutrition, 5(3), 268-277.

Bayir, A., Kiresi, D. A., Kara, H., Cengiz, S. L., Koçak, S., Özdinç, S., … & Bodur, S. (2008). The effects of mannitol and melatonin on MRI findings in an animal model of traumatic brain edema. Acta Neurologica Belgica, 108(4), 149.

Briones, T. L., Woods, J., & Rogozinska, M. (2013). Decreased neuroinflammation and increased brain energy homeostasis following environmental enrichment after mild traumatic brain injury is associated with improvement in cognitive function. Acta neuropathologica communications, 1(1), 57.

Conte, V., Uryu, K., Fujimoto, S., Yao, Y., Rokach, J., Longhi, L., … & Praticò, D. (2004). Vitamin E reduces amyloidosis and improves cognitive function in Tg2576 mice following repetitive concussive brain injury. Journal of neurochemistry, 90(3), 758-764.

Hall, E. D., Vaishnav, R. A., & Mustafa, A. G. (2010). Antioxidant therapies for traumatic brain injury. Neurotherapeutics, 7(1), 51-61.

Ishaq, G. M., Saidu, Y., Bilbis, L. S., Muhammad, S. A., Jinjir, N., & Shehu, B. B. (2013). Effects of α-tocopherol and ascorbic acid in the severity and management of traumatic brain injury in albino rats. Journal of neurosciences in rural practice, 4(3), 292.

Kabadi, S. V., & Maher, T. J. (2010). Posttreatment with uridine and melatonin following traumatic brain injury reduces edema in various brain regions in rats. Annals of the New York Academy of Sciences, 1199(1), 105-113.

Leddy, J. J., Baker, J. G., & Willer, B. (2016). Active rehabilitation of concussion and post-concussion syndrome. Physical Medicine and Rehabilitation Clinics, 27(2), 437-454.

Lin, C. J., Chen, T. H., Yang, L. Y., & Shih, C. M. (2014). Resveratrol protects astrocytes against traumatic brain injury through inhibiting apoptotic and autophagic cell death. Cell death & disease, 5(3), e1147.

Lincoln, A. E., Caswell, S. V., Almquist, J. L., Dunn, R. E., Norris, J. B., & Hinton, R. Y. (2011). Trends in concussion incidence in high school sports: a prospective 11-year study. The American journal of sports medicine, 39(5), 958-963.

Mendes Arent, A., Souza, L. F. D., Walz, R., & Dafre, A. L. (2014). Perspectives on molecular biomarkers of oxidative stress and antioxidant strategies in traumatic brain injury. BioMed research international, 2014.

Mills, J. D., Hadley, K., & Bailes, J. E. (2011). Dietary supplementation with the omega-3 fatty acid docosahexaenoic acid in traumatic brain injury. Neurosurgery, 68(2), 474-481.

Oliver, J. M., Jones, M. T., Kirk, K. M., Gable, D. A., Repshas, J. T., Johnson, T. A., … & Zetterberg, H. (2016). Effect of Docosahexaenoic Acid on a Biomarker of Head Trauma in American Football. Medicine and science in sports and exercise, 48(6), 974-982.

Oliver, J. M., Anzalone, A. J., & Turner, S. M. (2018). Protection before impact: the potential neuroprotective role of nutritional supplementation in sports-related head trauma. Sports medicine, 1-14.

Pandi-Perumal, S. R., BaHammam, A. S., Brown, G. M., Spence, D. W., Bharti, V. K., Kaur, C., … & Cardinali, D. P. (2013). Melatonin antioxidative defense: therapeutical implications for aging and neurodegenerative processes. Neurotoxicity research, 23(3), 267-300.

Petraglia, A. L., Winkler, E. A., & Bailes, J. E. (2011). Stuck at the bench: Potential natural neuroprotective compounds for concussion. Surgical neurology international, 2.

Saiko, P., Szakmary, A., Jaeger, W., & Szekeres, T. (2008). Resveratrol and its analogs: defense against cancer, coronary disease and neurodegenerative maladies or just a fad?. Mutation Research/Reviews in Mutation Research, 658(1), 68-94.

Sakellaris, G., Kotsiou, M., Tamiolaki, M., Kalostos, G., Tsapaki, E., Spanaki, M., … & Evangeliou, A. (2006). Prevention of complications related to traumatic brain injury in children and adolescents with creatine administration: an open label randomized pilot study. Journal of Trauma and Acute Care Surgery, 61(2), 322-329.

Sakellaris, George, George Nasis, Maria Kotsiou, Maria Tamiolaki, Giorgos Charissis, and Athanasios Evangeliou. “Prevention of traumatic headache, dizziness and fatigue with creatine administration. A pilot study.” Acta paediatrica 97, no. 1 (2008): 31-34.

Singleton, R. H., Yan, H. Q., Fellows-Mayle, W., & Dixon, C. E. (2010). Resveratrol attenuates behavioral impairments and reduces cortical and hippocampal loss in a rat controlled cortical impact model of traumatic brain injury. Journal of neurotrauma, 27(6), 1091-1099.

Tang, H., Hua, F., Wang, J., Sayeed, I., Wang, X., Chen, Z., … & Stein, D. G. (2013). Progesterone and vitamin D: Improvement after traumatic brain injury in middle-aged rats. Hormones and behavior, 64(3), 527-538.

Trojian, T. H., Wang, D. H., & Leddy, J. J. (2017). Nutritional supplements for the treatment and prevention of sports-related concussion—evidence still lacking. Current sports medicine reports, 16(4), 247-255.

Vagnozzi, R., Signoretti, S., Floris, R., Marziali, S., Manara, M., Amorini, A. M., … & Lazzarino, G. (2013). Decrease in N-acetylaspartate following concussion may be coupled to decrease in creatine. The Journal of head trauma rehabilitation, 28(4), 284-292.

Zhu, H. T., Bian, C., Yuan, J. C., Chu, W. H., Xiang, X., Chen, F., … & Lin, J. K. (2014). Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury. Journal of neuroinflammation, 11(1), 59.

Zuckerman, S. L., Kerr, Z. Y., Yengo-Kahn, A., Wasserman, E., Covassin, T., & Solomon, G. S. (2015). Epidemiology of sports-related concussion in NCAA athletes from 2009-2010 to 2013-2014: incidence, recurrence, and mechanisms. The American journal of sports medicine, 43(11), 2654-2662.

Leave a Reply